

U.S. Department of Energy's Office of Science

Program Planning And Next Steps

Fusion Energy Sciences Advisory Committee
Gaithersburg, MD
February 19-20, 2008

Raymond J. Fonck

Associate Director for Fusion Energy Sciences

www.ofes.fusion.doe.gov

BES: Continuum of Research, Development, and Deployment

Draft, Conceptual OFES Organization

Office Operations

ITER & Projects Division

ITER MIE Project International Agreements MIE Projects

Magnetic Fusion Sciences Division

Burning Plasma (AT's)
Toroidal Stability & Confinement

Science Campaigns

Plasma Theory SciDac / FSP Diagnostics Enabling Technologies Materials

Plasma Sciences Division

HEDLP & IFES
Plasma Properties
Confined Plasmas
Low-Temperature Plasmas
Atomic Processes

Science Centers

Classical Elements of a Strategic Plan

Mission statement

– Why do we exist?

Vision statement

- Where do we want to be in 5, 10, 15 years?

SWOT

– What are our strengths, weaknesses, opportunities, and threats?

Competitive advantage

- What are we best at?

E.Strategic Objectives

– What are the key activities we need to perform to achieve our vision?

Strategies

– How do we achive our objectives?

Short-term goals/priorities/initiatives

- What are our 1,3,5 year goals to achieve our strategic objectives?

Action Items / Plans

Specific plans to implement our goals

Scorecard

Key performance measures to track our progress towards realizing our vision

Financial assessment

Parts of a Strategic Plan - 2

Mission statement

 The FES program supports world-leading science and technical research to develop the knowledge base for fusion energy sources, and to support fundamental Plasma Physics and High Energy Density Laboratory Plasma Physics.

Vision statement

 On the ITER time frame: answer key scientific and technical questions necessary to offer fusion as a viable energy option; plasma physics is a vibrant academic discipline; and HEDLP is a mature scientific discipline answering questions about extreme states of matter – all of tremendous potential value to the country.

Strategic Plan needs to deliver results along three strategic themes

- Fusion Energy Source(s)
- Fundamental Plasma Physics
- High Energy Density Laboratory Plasmas

Planning for OFES Science Research Programs

Identify long-range goals and map backwards

Grand Challenges, Missions Issue Identification, Research Needs Approaches, Options, Initiatives

Consolidation, Prioritization

Strategic Theme

NRC, FESAC, Snowmass, etc.

FESAC

Workshop(s)

QFES; FESAC NRC Plan, or Science Roadmap

Planning Stages

- Grand challenges, missions
 - Limitations of knowledge for goals; discovery topics
- Research Needs Information gathering
 - Big, overriding science issues
 - Goal defined or knowledge-defined
 - Opportunities for Leadership, Gaps
- Options & Approaches in-depth workshops
 - Drill down extract underlying scientific issues
 - ID ways to resolve/address issues
 - Develop conceptual initiatives & options
 - Mission
 - Scope
 - Readiness & dependencies
- Consolidation and Prioritization

Planning for OFES Science Research Programs

Workshops

- Workshops, similar to BES approach, will be used to develop approaches and possible initiatives
- Scientific /Technical Themes lead to Workshop Topics
 - Greenwald Panel
 - Theme A -Creating predictable, high performance steady-state plasmas
 - Theme B -Taming the Plasma-Materials Interface
 - Theme C -Harnessing fusion power
 - An additional theme- Accessing the Burning Plasma State
 - Expect FESAC charges to lead to additional themes
- Low Temperature Plasma Sciences Workshop is planned for March

"Basic Research Needs" Workshops

We have identified the basic science needed for the next-generation energy technologies

Basic Research Needs to Assure a Secure Energy Future

BESAC Workshop, October 21-25, 2002
The foundation workshop that set the model for the focused workshops that follow.

- Basic Research Needs for the Hydrogen Economy BES Workshop, May 13-15, 2003
- Nanoscience Research for Energy Needs BES and the National Nanotechnology Initiative, March 16-18, 2004
- Basic Research Needs for Solar Energy Utilization BES Workshop, April 18-21, 2005
- **Advanced Computational Materials Science: Application to Fusion** and Generation IV Fission Reactors BES, ASCR, FES, and NE Workshop, March 31-April 2, 2004
- The Path to Sustainable Nuclear Energy: Basic and Applied Research Opportunities for Advanced Fuel Cycles BES, NP, and ASCR Workshop, September 2005
- **Basic Research Needs for Superconductivity** BES Workshop, May 8-10, 2006
- Basic Research Needs for Solid-state Lighting BES Workshop, May 22-24, 2006
- Basic Research Needs for Advanced Nuclear Energy Systems BES Workshop, July 31-August 3, 2006
- Basic Research Needs for the Clean and Efficient Combustion of 21st Century Transportation Fuels BES Workshop, October 30-November 1, 2006
- Basic Research Needs for Geosciences: Facilitating 21st Century Energy Systems

BES Workshop, February 21-23, 2007

- Basic Research Needs for Electrical Energy Storage BES Workshop, April 2-5, 2007
- Basic Research Needs for Materials under Extreme Environments BES Workshop, June 10-14, 2007 10
- Basic Research Needs for Catalysis for Energy BES Workshop, August 5-10, 2007

Alternate Magnetic Confinement Configurations: (Draft) Element I

- Consider stellarators, spherical tori, reversed field pinches, and compact tori
- Concepts that may evolve toward energy producing systems
 - Identify and justify a long-term goal for the ITER era
 - At minimum, a burning plasma or beyond
- Repeat Methodology of recent Gaps & Opportunities Report
 - Critically evaluate each concept's goal and merits for fusion development
 - Identify/prioritize scientific questions that must be answered to achieve the goals
 - Assess available means to address the questions
 - Identify research gaps and generally how to address them

(Draft) Element II: Capturing the Dual-Nature of Alternates

- Alternative Concepts Sub-panel in July 1996 FESAC Report: two reasons for research in alternate confinement configurations
 - Advance fusion energy science to produce knowledge not accessible through the study of a single configuration
 - Potential for evolution to a fusion energy system
- Elucidate the merits of an alternate configuration outside of its potential as a fusion energy concept
 - Identify and prioritize unique toroidal science issues that a concept can explore to improve basic understanding of toroidal confinement and/or improve concepts that may evolve toward energy through integrated science campaigns

Summary

- FESAC can expect a request to undertake a study of the major alternate confinement configurations: possible issues
 - Reflect the dual purposes for studying these configurations
 - Identify aggressive goals for the ITER time frame
- A gaps and opportunities report for concepts with potential as fusion energy systems
 - Merits of chosen goal
 - Prioritized scientific goals
 - Assessment of available means
 - Gaps identification
- Elucidating merits for synergistically improving other fusion concepts through deeper understanding of toroidal confinement
 - Specific issues, with prioritization depending on potential impact
 - Develop claims made generally in past studies (e.g., Snowmass 2002)
- Tasks not defined until formal charge issued by Under Secretary